Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.436
1.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719951

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732065

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Carotenoids , Light , Thymus Plant , Trichoderma , Volatile Organic Compounds , Thymus Plant/chemistry , Thymus Plant/metabolism , Trichoderma/metabolism , Trichoderma/growth & development , Carotenoids/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Chlorophyll/metabolism , Terpenes/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Antioxidants/metabolism , Anthocyanins/metabolism , Anthocyanins/analysis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development
3.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Article En | MEDLINE | ID: mdl-38711012

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Carotenoids , Crocus , Flowers , Metabolomics , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Transcriptome , Metabolome
4.
BMC Genomics ; 25(1): 469, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745121

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Arachis , Gene Expression Regulation, Plant , Multigene Family , Oxygenases , Stress, Physiological , Arachis/genetics , Arachis/enzymology , Stress, Physiological/genetics , Oxygenases/genetics , Oxygenases/metabolism , Carotenoids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phylogeny , Genome, Plant , Promoter Regions, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism
5.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722384

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
6.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727833

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Chromosome Mapping , Citrullus , Fruit , Phenotype , Pigmentation , Plant Proteins , Citrullus/genetics , Citrullus/metabolism , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Genes, Plant , Carotenoids/metabolism , Genes, Recessive , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics , Lycopene/metabolism
7.
Physiol Plant ; 176(3): e14327, 2024.
Article En | MEDLINE | ID: mdl-38716559

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Anthocyanins , Chlorophyll , Plant Leaves , Seasons , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/physiology , Anthocyanins/metabolism , Chlorophyll/metabolism , Plant Senescence , Zeaxanthins/metabolism , Carotenoids/metabolism , Light , Plant Proteins/metabolism , Xanthophylls/metabolism
8.
PLoS One ; 19(5): e0302541, 2024.
Article En | MEDLINE | ID: mdl-38696430

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Chrysanthemum , Plant Diseases , Rhizoctonia , Volatile Organic Compounds , Chrysanthemum/metabolism , Chrysanthemum/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Chlorophyll/metabolism , Chlorophyll/analysis , Carotenoids/metabolism , Carotenoids/analysis
9.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702537

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Fermentation , Molasses , Rhodotorula , Saccharum , beta Carotene , Rhodotorula/metabolism , Rhodotorula/genetics , Rhodotorula/growth & development , Rhodotorula/isolation & purification , Rhodotorula/classification , Saccharum/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , Carotenoids/metabolism , Antioxidants/metabolism , Biomass , Culture Media/chemistry , Phylogeny
10.
J Transl Med ; 22(1): 424, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704581

BACKGROUND: The measurement of the skin carotenoids using the Veggie Meter® has emerged as a rapid objective method for assessing fruit and vegetable intake, highly recommended by the Mediterranean Diet (MD), which represents one of the healthiest dietary patterns, worldwide. This study aimed to examine differences in skin carotenoid content and degree of adherence to the MD pattern between two adult populations from Southern Italy and the Dominican Republic. METHODS: This cross-sectional study enrolled a total of 995 adults, 601 subjects from Italy and 394 from the Dominican Republic. All participants underwent anthropometric measurements and skin carotenoid assessment by Veggie Meter®. Adherence to the MD and lifestyle were evaluated using the Mediterranean Diet Adherence Screener (MEDAS) and the Mediterranean Lifestyle Index (MEDLIFE) questionnaires. Correlations between the skin carotenoid and MEDAS score were estimated using Pearson's correlation coefficient. Multiple linear regression models were created to determine variables that affect skin carotenoid score for both populations. RESULTS: Mean total skin carotenoids were higher in the Italian compared to the Dominican Republic population (342.4 ± 92.4 vs 282.9 ± 90.3; p < 0.005) regardless of sex (women: 318.5 ± 88.9 vs 277.3 ± 91.9, p < 0.005 and men: 371.7 ± 88.3 vs 289.5 ± 88.1, p < 0.005), and remaining statistically significant after age-adjustment of the Dominican Republic sample. Using the MEDAS questionnaire, we found a higher MD adherence score in the Italian than in the Dominican Republic population also after age-adjusting data (7.8 ± 2.1 vs 6.2 ± 3.7; p < 0.005) and even when categorized by sex (Italian vs age-adjusted Dominican Republic women: 7.9 ± 2.1 vs 6.3 ± 2.6; Italian vs age-adjusted Dominican Republic men: 7.7 ± 2.2 vs 6.0 ± 4.7; p < 0.005). Using the MEDLIFE test, total Italians presented a lower score with respect to the age-adjusted Dominican Republic population (3.2 ± 1.2 vs 3.4 ± 1.4; p < 0.05). In multiple regression analysis, skin carotenoids were associated with sex and negatively associated with BMI in the Italian population (sex: ß: 54.95; 95% CI: 40.11, 69.78; p < 0.0001; BMI: ß: - 1.60; 95% CI: - 2.98,0.86; p = 0.03), while they resulted associated with age and sex in the Dominican Republic population (age: ß: 2.76; 95% CI: 1.92, 3.56; p < 0.001; sex: ß: 23.29; 95% CI: 5.93, 40.64; p = 0.009). Interestingly, skin carotenoids were positively correlated with MEDAS score in both populations (Italy: r = 0.03, p < 0.0001, Dominican Republic: r = 0.16, p = 0.002). CONCLUSIONS: This study provides the assessment of the adherence to the MD and skin carotenoid content in adults living in Southern Italy and the Dominican Republic, showing a higher MD adherence score and a skin carotenoid content in inhabitants from the Mediterranean region. Our findings highlight the need to globally encourage fruit and vegetable intake, particularly in non-Mediterranean area.


Carotenoids , Diet, Mediterranean , Skin , Humans , Italy , Dominican Republic , Carotenoids/analysis , Carotenoids/metabolism , Female , Male , Adult , Skin/metabolism , Middle Aged , Cross-Sectional Studies , Patient Compliance/statistics & numerical data , Surveys and Questionnaires
11.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731424

Climate change, which causes periods with relatively high temperatures in winter in Poland, can lead to a shortening or interruption of the cold hardening of crops. Previous research indicates that cold acclimation is of key importance in the process of acquiring cereal tolerance to stress factors. The objective of this work was to verify the hypothesis that both natural temperature fluctuations and the plant genotype influence the content of metabolites as well as proteins, including antioxidant enzymes and photosystem proteins. The research material involved four winter triticale genotypes, differing in their tolerance to stress under controlled conditions. The values of chlorophyll a fluorescence parameters and antioxidant activity were measured in their seedlings. Subsequently, the contribution of selected proteins was verified using specific antibodies. In parallel, the profiling of the contents of chlorophylls, carotenoids, phenolic compounds, and proteins was carried out by Raman spectroscopy. The obtained results indicate that a better PSII performance along with a higher photosystem II proteins content and thioredoxin reductase abundance were accompanied by a higher antioxidant activity in the field-grown triticale seedlings. The Raman studies showed that the cold hardening led to a variation in photosynthetic dyes and an increase in the phenolic to carotenoids ratio in all DH lines.


Plant Proteins , Seedlings , Spectrum Analysis, Raman , Triticale , Seedlings/metabolism , Seedlings/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Triticale/genetics , Triticale/metabolism , Spectrum Analysis, Raman/methods , Chlorophyll/metabolism , Temperature , Carotenoids/metabolism , Antioxidants/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Seasons , Chlorophyll A/metabolism
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159496, 2024 Jun.
Article En | MEDLINE | ID: mdl-38649008

This work aims to understand better the mechanism of cellular processes accompanying the activation of human T cells and to develop a novel, fast, label-free approach to identify molecular biomarkers for this process. The standard methodology for confirming the activation state of T cells is based on flow cytometry and using antibodies recognizing activation markers. The method provide high specificity detection but may be susceptible to background staining or non-specific secondary antibody reactions. Here, we evaluated the potential of Raman-based molecular imaging in distinguishing non-activated and activated human T cells. Confocal Raman microscopy was performed on T cells followed by chemometrics to obtain comprehensive molecular information, while Stimulated Raman Scattering imaging was used to quickly provide high-resolution images of selected cellular components of activated and non-activated cells. For the first time, carotenoids, lipids, and proteins were shown to be important biomarkers of T-cell activation. We found that T-cell activation was accompanied by lipid accumulation and loss of carotenoid content. Our findings on the biochemical, morphological, and structural changes associated with activated mature T cells provide insights into the molecular changes that occur during therapeutic manipulation of the immune response. The methodology for identifying activated T cells is based on a novel imaging method and supervised and unsupervised chemometrics. It unambiguously identifies specific and unique molecular changes without the need for staining, fixation, or any other sample preparation.


Biomarkers , Carotenoids , Lipid Metabolism , Lymphocyte Activation , Spectrum Analysis, Raman , T-Lymphocytes , Humans , Carotenoids/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Spectrum Analysis, Raman/methods , Biomarkers/metabolism , Proteins/metabolism
13.
Plant Physiol Biochem ; 210: 108616, 2024 May.
Article En | MEDLINE | ID: mdl-38615444

This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.


Photosynthesis , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Magnetic Iron Oxide Nanoparticles , Chlorophyll/metabolism , Minerals/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Ferric Compounds
14.
Methods Mol Biol ; 2788: 3-18, 2024.
Article En | MEDLINE | ID: mdl-38656505

Carotenoids are the natural pigments available in nature and exhibit different colors such as yellow, red, and orange. These are a class of phytonutrients that have anti-cancer, anti-inflammatory, anti-oxidant, immune-modulatory, and anti-aging properties. These were used in food, pharmaceutical, nutraceutical, and cosmetic industries. They are divided into two classes: carotenes and xanthophylls. The carotenes are non-oxygenated derivatives and xanthophylls are oxygenated derivatives. The major source of carotenoids are vegetables, fruits, and tissues. Carotenoids also perform the roles of photoprotection and photosynthesis. In addition to the roles mentioned above, they are also involved and act as precursor molecules for the biosynthesis of phytohormones such as strigolactone and abscisic acid. This chapter briefly introduces carotenoids and their extraction method from plant tissue. Proposed protocol describes the extraction of carotenoid using solvents chloroform and dichloromethane. Reverse-phase HPLC can be performed with C30 columns using gradient elution. The column C30 is preferred to the C18 column because the C30 column has salient features, which include selective nature in the separation of structural isomers and hydrophobic, long-chain compounds, and shows the best compatibility with highly aqueous mobile phases. A complete pipeline for the extraction of carotenoids from plant tissue is given in the present protocol.


Carotenoids , Carotenoids/isolation & purification , Carotenoids/chemistry , Carotenoids/metabolism , Chromatography, High Pressure Liquid/methods , Plants/chemistry , Plants/metabolism , Plant Extracts/chemistry
15.
Commun Biol ; 7(1): 448, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605243

Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble ß-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds ß-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, ß-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while ß-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.


Grasshoppers , beta Carotene , Animals , Grasshoppers/metabolism , Carotenoids/metabolism , Xanthophylls , Chitin
16.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605293

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolism , Salt Tolerance/genetics , Transcriptome , Lignin/metabolism , Flavonoids/metabolism , Antioxidants/metabolism , Carotenoids/metabolism , Ion Transport , Carbon/metabolism , Soil , Transcription Factors/genetics
17.
Mar Drugs ; 22(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38667802

Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.


Diatoms , Oxidoreductases , Xanthophylls , Diatoms/genetics , Xanthophylls/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , CRISPR-Cas Systems , Gene Knockout Techniques/methods , Carotenoids/metabolism , Microalgae/genetics , Mutation
18.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673998

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Gene Expression Regulation, Plant , Pinus , Plant Proteins , Pinus/genetics , Pinus/metabolism , Pinus/parasitology , Pinus/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Chlorophyll/metabolism , Chlorophyll/biosynthesis , Carotenoids/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Terpenes/metabolism , Chlorophyll A/metabolism , Plants, Genetically Modified , Acetates/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Promoter Regions, Genetic , Abscisic Acid/metabolism , Biosynthetic Pathways
19.
J Exp Biol ; 227(9)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38634224

In many species of animals, red carotenoid-based coloration is produced by metabolizing yellow dietary pigments, and this red ornamentation can be an honest signal of individual quality. However, the physiological basis for associations between organism function and the metabolism of red ornamental carotenoids from yellow dietary carotenoids remains uncertain. A recent hypothesis posits that carotenoid metabolism depends on mitochondrial performance, with diminished red coloration resulting from altered mitochondrial aerobic respiration. To test for an association between mitochondrial respiration and red carotenoids, we held wild-caught, molting male house finches in either small bird cages or large flight cages to create environmental challenges during the period when red ornamental coloration is produced. We predicted that small cages would present a less favorable environment than large flight cages and that captivity itself would decrease both mitochondrial performance and the abundance of red carotenoids compared with free-living birds. We found that captive-held birds circulated fewer red carotenoids, showed increased mitochondrial respiratory rates, and had lower complex II respiratory control ratios - a metric associated with mitochondrial efficiency - compared with free-living birds, though we did not detect a difference in the effects of small cages versus large cages. Among captive individuals, the birds that circulated the highest concentrations of red carotenoids had the highest mitochondrial respiratory control ratio for complex II substrate. These data support the hypothesis that the metabolism of red carotenoid pigments is linked to mitochondrial aerobic respiration in the house finch, but the mechanisms for this association remain to be established.


Carotenoids , Finches , Mitochondria , Animals , Carotenoids/metabolism , Male , Finches/physiology , Finches/metabolism , Mitochondria/metabolism , Cell Respiration , Oxygen Consumption
20.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1138-1156, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658154

Manganese (Mn) is an essential element for plants and plays a role in various metabolic processes. However, excess manganese can be toxic to plants. This study aimed to analyze the changes in various physiological activities and the transcriptome of Arabidopsis under different treatments: 1 mmol/L MnCl2 treatment for 1 day or 3 days, and 1 day of recovery on MS medium after 3 days of MnCl2 treatment. During the recovery phase, minor yellowing symptoms appeared on the leaves of Arabidopsis, and the content of chlorophyll and carotenoid decreased significantly, but the content of malondialdehyde and soluble sugar increased rapidly. Transcriptome sequencing data shows that the expression patterns of differentially expressed genes exhibit three major models: initial response model, later response model, recovery response model. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis identified several affected metabolic pathways, including plant hormone signal transduction mitosolysis activates protein kinase (MAPK) phytohormone signaling, phenylpropanoid biosynthesis, ATP binding cassette transporters (ABC transporter), and glycosphingolipid biosynthesis. Differential expressed genes (DEGs) involved in phenylpropanoid biosynthesis, ABC transporter, and glycosphingolipid biosynthesis, were identified. Sixteen randomly selected DEGs were validated through qRT-PCR and showed consistent results with RNA-seq data. Our findings suggest that the phenylpropanoid metabolic pathway is activated to scavenge reactive oxygen species, the regulation of ABC transporter improves Mn transport, and the adjustment of cell membrane lipid composition occurs through glycerophospholipid metabolism to adapt to Mn stress in plants. This study provides new insights into the molecular response of plants to Mn stress and recovery, as well as theoretical cues for cultivating Mn-resistant plant varieties.


Arabidopsis , Manganese , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/metabolism , Manganese/metabolism , Gene Expression Regulation, Plant , Transcriptome , Gene Expression Profiling , Chlorides/metabolism , Manganese Compounds/metabolism , Signal Transduction/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Plant Growth Regulators/metabolism , Carotenoids/metabolism
...